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Total coliforms, as a microbiological indicator of water quality, have been tested on the basis of 
condition, dynamics, as well as on the dependence on other physicochemical and biological 
parameters, by methods and models of data mining. Using a combination of intelligent approaches, 
cluster analysis and classification, total coliforms have been analyzed and modeled on the examples of 
the Gruža and the Grošnica reservoirs. These reservoirs have different morphometric characteristics, 
different trophic status as well as dominant bacterial communities. The study is based on the existing 
information system and automated data analyses for the period of 10 years. The system determines the 
accuracy of analyses by validity percentage. The analyses show that the number of total coliforms is 
connected to anthropogenic activity, the amount of organic mater, as well as to the presence of 
bacterial community which is not dominant or characteristic for the specific reservoir.  
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INTRODUCTION 
 
Water quality is determined according to its physical, 
chemical and biological parameters (Sargaonkar and 
Deshpande, 2003). The main problem is the complexity 
of the analysis of great number of variables as well as 
their variability due to natural and human influences 
(Saffran, 2001; Simeonov et al., 2002). Classification, 
modeling and interpretation of great number of data are 
an important segment of water quality monitoring 
(Boyacioglu and Boyacioglu, 2007). 

In recent years, various  tools  and  techniques  of  data 
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Abbreviations: TC, total coliforms; H, heterotrophs; Hm, 
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mining have become an important part of monitoring of  
water quality status; they also provide prediction of 
changes, and are significant in the processes of 
sustainable monitoring of water resources (Kumar et al., 
2006). Data mining also known as ―knowledge-discovery 
in databases‖ implies automatic or semiautomatic 
research and analysis of great amount of data in order to 
discover patterns and relations hidden among the data 
(Han et al., 2010). 

In water quality assessment the microbial community 
has special significance, especially in terms of protecting 
public health. Coliform bacteria, normally present in 
intestinal tract of humans and worm-blooded animals, 
can secondary be found on plants, in the soil and in 
waters. Although primarily non-pathogenic, their 
presence refers to the presence of disease-causing 
organisms. They reach natural waters mainly during 
rainfall, through runoff from agricultural and urban lands 
as well as through drainage (Medema et al., 2003). Total 
(TC) and fecal coliforms  (FC)  as  indicators  of  previous 
and new fecal pollution, are often used as indicators of 
microbial  water quality (Rompré et al., 2002). TC is used 



 
 
 
 
as a parameter giving basic information on 
microbiological quality of surface waters (WHO, 2008). 

Different factors influence the number and dynamics of 
coliform bacteria in natural surface waters. 
Physicochemical and biological properties of water, such 
as pH, dissolved oxygen, temperature, phosphates, 
BOD5, SS, organic and inorganic nutrients, humic 
substances, predacious microorganisms such as 
protozoa, also have an important role (McCambridge and 
McMeekin, 1984; Curtis et al., 1992; Bagde and Rangari, 
1999; Youn-Joo et al., 2002; Juhna et al., 2007; Syed 
Ahmad et al., 2009; Hong et al., 2010). Environmental 
factors also have great influence: atmospheric conditions 
(precipitation and solar radiation), surface runoff, human 
activities causing contamination such as different use of 
land – agricultural, urban, industrial (Gameson and 
Saxon, 1967; McCambridge and McMeekin, 1984; Fisher 
and Endale 1999; Kistemann et al., 2002; Tong and 
Chen, 2002; George et al., 2004; Mehaffey et al., 2005; 
Byamukama et al., 2005; Zhang and Lulla, 2006; Derlet 
et al., 2008).   

The Gruža and the Grošnica reservoirs are important 
sources of water supply for Kragujevac city and its 
surroundings. In previous period, these reservoirs were 
subjects to various hydro-biological researches (Ćurĉić 
and Ĉomić, 2002; Ostojić et al., 2005, 2007), concluding 
that Gruža is eutrophic reservoir in which the dominant 
community is the heterotrophic bacteria while Grošnica is 
oligo-mezotrophic reservoir in which the facultative 
oligotrophic is the dominant bacteria group. The number 
of total coliforms was observed in standard 
microbiological researches but they have never been 
subject to any further researches. 

The analysis, modeling and prediction of the number of 
total coliforms were performed by various statistical and 
other tools, among which data mining tools were less 
frequent (Canale et al., 1973; Mahloch, 1974; Bergstein 
et al., 2001; Brion et al., 2002; Idakwo and Abu, 2004; 
Derlet et al., 2008; Iscen et al., 2008; Syed Ahmad et al., 
2009). Due to the importance of coliform bacteria in 
determining quality of natural waters, the aim of this 
paper is to automatically, with chosen methods and 
models of data mining, determine the dependence 
degree and the size of influence of physicochemical and 
biological parameters on abundance and dynamics of 
total coliform bacteria, based on the data implied in 
information system for the two reservoirs with different 
morphometric characteristics, trophic status and 
dominant bacterial community.  
 
 
MATERIALS AND METHODS 
 
Study area and water quality data  
 
The city of Kragujevac (in the central part of Serbia) is supplied with 
water from the Gruža and the Grošnica reservoirs (Figure 1). 
Characteristics and the values of trophic  state  parameters  of  both 
reservoirs  are  given  in  previous  paper (Ostojić et al., 2007). The 
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data set used in this study was generated through monitoring of the 
water quality of the Gruža and the Grošnica reservoir. The data set 
includes the data of the laboratory for water quality inspection of the 
public utility company for water supply and sewerage in Kragujevac. 
Monthly sampling was carried out during the period of ten years 
(1998 to 2008). Three permanent sampling sites were selected for 
qualitative and quantitative sampling for Grošnica reservoir and five 
sampling sites for Gruža reservoir (Figure 1). Samples were taken 
at every 5 m of depth. Analyses were performed by using standard 
methods (APHA, 1998). Physicochemical, microbiological and other 
parameters used for modeling are same for both reservoirs. They 
were taken from the information system Serbian lakes and 
reservoirs (SeLaR), and are described in detail in the paper 
Stefanović et al. (2012).   

Data set for Gruža reservoir includes 1608 samplings, out of 
which 640 values for TC are missing, therefore 968 data have been 
used for the analysis. For Grošnica reservoir the data set implies 
382 sampling, out of which 172 include TC values and they have 
been used for the analysis.  
 
 

Data analysis, methods and models 
 

In our case, data source is relational database of the SeLaR 
information system. This database stores a wide spectrum of 
different data such as characteristics of lakes and reservoirs, their 
geographic positions, characteristics of the surroundings etc. It also 
stores values of physical, chemical and microbiological parameters 
measured over the years at different locations and depths of lakes 
and reservoirs. This way, it integrates all the data required in the 
data mining process. Data entry process ensures data quality 
through different validation mechanisms, data model constrains and 
relationships. Processes of extracting, transformation and loading 
are realized through the special interface called unified dimensional 
model (UDM) (Mundy et al., 2011).  

Construction of the UDM as an additional layer over the data 
sources offers more clearly data model, isolation from the 
heterogeneous data platforms and formats, and improved 
performance for aggregated queries and data mining processing. 
UDM also allows business rules to be embedded in the model, as 
well as option to define actions in relation to query results (that is 
drill-down reporting). Another advantage of this approach is that 
UDM does not require data warehouse or data mart. It is possible to 
construct UDM directly on top of relational database systems, and 
to combine relational databases and data warehouse systems 
within a single UDM. UDM allow creation of one data source view 
(DSV) for use by the system. The DSV is an abstraction layer that is 
used to extend the objects (relational tables and views) that are 
exposed by the data source to a collection of objects from which 
OLAP (On-line analytical processing) server objects are created. 
Within the data source view we included all of the relational views 
that were used to create OLAP cubes and data mining models. 

Data in the relational database are stored in normalized tables 
optimized for transactional processing. UDM interface performs 
several activities: data selection, calculation of certain aggregated 
values, and transforms data so it can be used in the data mining 
process. These data transformation forms have both temporal and 
spatial dimensions. 

As a software development environment we used Microsoft SQL 
server 2008 R2 package: relational database engine for SeLaR 
data, integration services for data transformation and loading, and 
analysis services for OLAP and data mining modeling. We used 
clustering and decision trees algorithms for building the data mining 
models.  
 
 

Clustering 
 
Clustering is the  process  of  grouping  a  set  of  data  objects  into 

http://kobsonbeta.nb.rs/?autor=Curcic%20Svetlana%20S
http://kobsonbeta.nb.rs/?autor=Curcic%20Svetlana%20S
http://kobsonbeta.nb.rs/?autor=Curcic%20Svetlana%20S
http://kobsonbeta.nb.rs/?autor=Comic%20Ljiljana%20R


2348         Afr. J. Microbiol. Res. 
 
 
 

 
 
Figure 1. The Gruža and the Grošnica reservoir sampling points (1– Dam, 2 – Center, 3 
– Bridge, 4 – The mouth of the Boraĉ River, 5 – The mouth of the Gruža River). 

 
 
 
multiple groups or clusters so that objects within a cluster have high 
similarity, but are very dissimilar to objects in other clusters. 
Similarity or dissimilarity between objects in a single cluster is 
determined by measurements (or proximities). Calculation of 
similarity/dissimilarity between attributes is dependent on the 
attribute type (normal, binary, numeric and ordinal) and can be 
based on distance between attribute values or probabilities of 
attribute values. Clusters can have stronger or weaker 
relationships. Values of particular objects (rows or n-tuples) of some 
variable (column or attribute) can be common for more than one 
cluster. The number of this common object values determine the 
degree of relationship (similarity) between clusters. Basic clustering 
techniques are organized into the following categories: partitioning 
methods, hierarchical methods, density-based methods and grid-
based methods. Partitioning organizes the objects of a set into 
several exclusive groups or clusters. First, from n set of objects, k 
partitions are formed, and then iterative relocation technique is 
applied which improves the model by moving objects between 
partitions. Partitioning methods include k-means, k-medoids, and 
CLARANS (Jiawei Han et al., 2010). 

Clustering algorithm within SQL server analysis offers two 
clustering methods: Expectation Maximization (EM) and K-means. 
EM cluster assignment method uses a probabilistic measure to 
determine which objects belong to which cluster. EM method 
considers a bell curve for each dimension with a mean and 
standard deviation. As a point falls within the bell curve, it is 
assigned to a cluster with a certain probability. Because the curves 
for various clusters can (and do) overlap, any point can belong to 
multiple clusters, with an assigned probability for each. This 

technique is considered soft clustering because it allows clusters to 
overlap with indistinct edges. The K-means (it belongs to group of 
partitioning methods) method assigns cluster membership by 
distance an object belongs to the cluster whose centre it is closest 
to (which is measured using a simple Euclidean distance). When all 
objects have been assigned to clusters, the centre of the cluster is 
moved to the mean of all assigned objects, thus the name K-means 
-K being the typical denomination for the number of clusters to look 
for. This technique is considered hard clustering because each 
object is assigned one and exactly one cluster (MacLennan et al., 
2009). The analysis services clustering algorithm provides a 
scalable framework. The principle of the scalable framework is that 
particular data points that are not likely to change clusters can be 
compressed out of the data you are iterating over, providing room 
to load more data. 

Clustering modeling is the process in which selection of variables 
and determinations of input parameters are performed. Selection of 
variables depends on the research goal. Parameters used in our 
cluster model are as follows:  
 
i) The CLUSTERING METHOD parameter indicates which methods 
(algorithm) are used to determine cluster membership. This 
parameter can have the following values:   
 
a) Scalable EM (default);  
b) Vanilla (non-scalable) EM;  
c) Scalable K-means;  
d) Vanilla (non-scalable) K-means.  
ii) CLUSTER_COUNT tells the algorithm how many clusters to find.  



 
 
 
 
iii) MINIMUM CLUSTER CASES controls when a cluster is 
considered empty and is discarded and reinitialized.  
iv) MODELLING_CARDINALITY controls how many candidate 
models are generated during clustering.  
v) STOPPING_TOLERANCE is used by the algorithm to determine 
when a model has converged.  
vi) SAMPLE_SIZE indicates the number of cases used in each step 
of the scalable framework.  
vii) CLUSTER_SEED is the random number seed used to initialize 
the clusters. 
viii) MAXIMUM_INPUT_ATTRIBUTES controls how many attributes 
can be considered for clustering before automatic feature selection 
is invoked.  
ix) MAXIMUM STATES controls how many states one particular 
attribute can have. 
 
Based on our experimenting and general best practice, we selected 
the most suitable values for these parameters. Clustering results 
(knowledge) are presented in different view which allows further 
analysis and decision making. These are: Cluster profiles view, 
Cluster diagram view, Cluster characteristics view and Cluster 
discrimination view. The first two views correspond to all clusters, 
and the last two views refer to particular clusters. The Cluster 
profiles view displays a column for each cluster in the model and a 
row for each attribute. This setup makes it easy to see interesting 
differences across the cluster space. Using this view, it is possible 
to choose an attribute of interest and visibly scan horizontally to see 
its distribution across all clusters. When we notice some interesting 
items, we can look at neighboring cells or other cells of the same 
cluster to learn more about what that cluster means. Clicking any 
cell in the grid provides details on the information contained in the 
mining legend. Cluster diagram gives us a visual representation of 
all clusters, where clusters with greater number of objects are 
shaded with darker color. Also, the ticker lines between clusters 
represent stronger relationships. In Cluster characteristics view, 
attributes are displayed by probabilities and sorted in descending 
order. Attributes with highest probabilities determine characteristics 
of the cluster and its name. Cluster discrimination view gives 
comparison of a single cluster with complement of whole 
population, as well as comparison between any two clusters 
(MacLennan et al., 2009).  Probabilities obtained from clustering 
process are calculated as:  
 
p = rc/rp, 
 
 where rc is number of rows (objects) in the observed cluster, and rp 
is number of rows in the whole population. 
 
 
Classification with decision trees 
 
Classification is a process of finding the set of models or functions 
that describe and differentiate classes of data or concepts. These 
models are used for prediction of object class whose class label is 
unknown. Classification involves two main steps. In the first step, 
model based on the known data is designed. If the model is 
acceptable, in the second step, model used for classification of new 
data is developed. 

There are several classification methods which use different data 
mining algorithms: decision trees, logistic regression, naïve bayes 
and neural networks. The principal idea of a decision tree is to split 
data recursively into subsets. Each input attribute is evaluated to 
determine how cleanly it divides the data across the classes (or 
states) of your target variable (predictable attribute). The process of  
evaluating all inputs is then repeated on each subset. When this 
recursive process is completed, a decision tree is formed. Decision 
tree induction is a top-down recursive tree induction algorithm, 
which uses an attribute  selection  measure  to  select  the  attribute  
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tested for each nonleaf node in the tree. ID3, C4.5, and CART are 
examples of such algorithms using different attribute selection 
measures. Tree pruning algorithms attempt to improve accuracy by 
removing tree branches reflecting noise in the data (Jiawei Han et 
al., 2010). 

Besides the classification, the decision tree method can be used 
for regression and estimation. Decision tree used in SQL server 
analysis services has several input parameters. These parameters 
are used to control the tree growth, tree shape, and the input/output 
attribute settings. Classification modeling consists of determining 
the target variable, influence variables, as well as input parameters. 
A classification model extracts patterns that predict the individual 
values of one column based on the values in other columns. 
Classification process is characterized by Gorunescu  (2011): input 
- a training dataset containing objects with attributes, of which one 
is the class label; output - a model (classifier) that assigns a specific 
label for each object (classifies the object in one category), based 
on the other attributes; the classifier is used to predict the class of 
new, unknown objects. A testing dataset is also used to determine 
the accuracy of the model. 

Interpretation of results is done through the decision tree viewer 
and dependency network. The tree is laid out horizontally with the 
root node on the left side. Each subsequent node in the tree relates 
to certain condition for input variable. Each node contains a 
histogram bar with different colors, representing various classes. 
For each class, at given conditions, occurrence probability of its 
values is shown. 

The dependency network displays the relationships among 
attributes derived from decision tree model‘s content. Each node 
represents one attribute, and each edge represents the relationship 
between two nodes. An edge has a direction, pointing from the 
input attribute (node) to the predictable attribute (node). An edge 
can be bidirectional, which means two nodes can predict each 
other. Probabilities in classification representation are calculated as 
 
p = nc/n,  
 
where nc is number of class instances of target variable, and n is 
total number of instances of target variable in the observed tree 
node. 

 
   
RESULTS AND DISCUSSION 
 

Cluster analysis (CA) 
 

Ten clusters have been initialized based on the data for 
the Gruža reservoir, and seven clusters for Grošnica 
reservoir. Figures 2 and 3 show the cluster diagrams for 
both reservoirs which show a graphical representation of 
the data associations found. The significant clusters or 
nodes of data are shown as shaded rectangles. Dark 
lines show the strong intercluster relations. For each 
cluster the range of parameters is given, as well as the 
probabilities with which they participate in the cluster. 
Based on the analysis of cluster characteristics, it is 
possible to see which variables are dominant in certain 
clusters and with which probabilities. Since the emphases 
in this paper lies on the analysis of TC, for the 
representation we chose the clusters in which TC had the 
most significant influences. As best way of presenting 
different influences that TC and other parameters have in 
a certain cluster in regard to other clusters, we chose the 
Cluster discrimination. 
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Figure 2. Cluster Diagram for TC - The Gruža reservoir. 

 
 
 
For the Gruža reservoir (Figure 2) the most important 
clusters are 2 and 3, and right after 4 and 6. Most objects 
are focused in these clusters. For representation we 
chose cluster 2 in which TC are most influential with 
smaller number, and cluster 6 in which they have 
significant role with greater values. Difference analysis 
between cluster 2 and 6 with other clusters is best seen 
from Cluster discrimination (Tables 1 and 2). 

By modeling it has been determined that TC is most 
influential in cluster 2, with values < 120 MPN/100 ml and 
probability of 100%. Through Cluster discrimination 
browser it is noticeable that the likeliness that they could 
be found in greater number in other clusters is 26%. This 
indicates the greater data range related to TC in other 
clusters, and also, in other clusters they do not group 
around a certain number as in cluster 2. In cluster 2 
relatively significant influence have H with values < 1540 
cfu/ml and probability of 62%. Relatively significant 
influences also have Hm < 320 cfu/ml with 56% 
probability, as well as FO < 1520 cfu/ml with probability of 
49%. Relatively significant influence, 46% probability in 
the cluster 2, has Chl-a with values < 25 µg/l, and EC 
ranging 300 to 330 µS/cm with 21% probability. With 
probability of 15%, in cluster 2, there is also Fe < 0.1 
mg/l, then 10%, M alkalinity 26 to 29 ml/l and BOD5 < 6.3  
mg/l with 5% probability. In which ranges and with 
whatprobabilities these as well as some less influential 
parameters determine other clusters in regard to cluster 
2, is shown in Table 1. 

Contrary to cluster 2, cluster 6 favors higher values for  

 
 
 
 
TC, in  regard  to  other  clusters  (0 to 2340 MPN/100 ml) 
and with values of 51%. In it, the greatest significance 
has the depth of 15 m with 100% probability, as well as 
Mn 0 to 0.1 mg/l with 51%. Significant influence, as in 
cluster 2, has Chl-a with 25% probability, but with lower 
values 0.0 to 7.7 µg/l. The depths smaller than 15m, 
unlike cluster 6, are present in other clusters with 43%, 
and the values of TC >2340 MPN/100 ml, with 11%. The 
range of appearance, probabilities and belonging to 
cluster 6 or the other clusters, of less influential 
parameters, are shown in Table 2. If we compare the 
characteristics of clusters 2 and 6, the clear difference 
regarding to locations is noticeable. While cluster 2 favors 
locations 1 and 2 (near the dam) with 60%, and locations 
3 (bridge), 33%, which is the deepest part of the 
reservoir, cluster 6 favors locations 4 and 5 (mouth of 
tributaries) with 66% and 3 (bridge) whit 13%, where is 
the shallowest part of the reservoir (Table 3).  

For the Grošnica reservoir (Figure 3) the most 
important are clusters 1 and 3. Most data are focused in 
these clusters. Clusters 2, 4 and 5 come right after. The 
cluster analysis shows that TC has the greatest influence 
in clusters 3 and 5. In cluster 3, in regard to other 
clusters, the values TC < 135 MPN/100 ml come together 
with the probability of 100%. Contrary to that, the 
probability that they would be found in greater number in 
other clusters is 28%. In cluster 3, relative influence has 
NH4

+
 with values < 0.1 mg/l (contrary to other clusters 

with values 0.1 to 2 mg/l, 8%) and M alkalinity in the 
range of 29 to 37 ml/l, with 48% of appearance probability 
(contrary to others 0.8 to 29 ml/l, 3%). Sampling in March 
and August in this cluster is present with 13 and 10%, 
and values for EC 313 to 467 µS/cm, 8%, Fe with 0.02 
mg/l is 6% same as the values for BOD5  < 3.6 mg/l. Fe, 
Cl

-
, TP, months April and May, also belong to this cluster. 

Their probabilities, ranges of appearance and belonging 
to cluster 3 or other clusters are shown in Table 4.  

Contrary to cluster 3, cluster 5, in regard to other 
clusters, favors the values TC < 40 MPN/100 ml with the 
probability of 100%. The values > 40 MPN/100 ml in 
other clusters are with 25% probability. M alkalinity in 
cluster 5 is 32 to 37 ml/l (38%) and FO (9%) from 171 to 
385 cfu/ml. November with 11% probability and July with 
4% also belong to cluster 5. Mn in range 0.0 to 0.8 mg/l 
and TP 0.02 µg/l belong to the same cluster and with 
same probabilities. The ranges and probabilities of the 
same parameters but in other clusters are shown in Table 
5. 

The analysis of clusters in which TC are the most 
dominant, indicates that in the Gruža reservoir localities 
and depths at which certain number of TC appears can 
be grouped, as well as that there is the relation between 
the number of other microbiological communities (H, Hm, 
FO) and the number of TC. There is regularity that 
greater abundance of any community (by the analysis of 
certain number for each) indicates greater number of TC. 
Also noticeable is the dependence of certain numbers of  
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Table 1. Cluster discrimination - cluster 2 and other clusters - The Gruža reservoir. 
 

Variables (units)* Values Favors cluster 2 Favors complement of cluster 2 

TC (MPN/100 ml) < 120 100  

H (cfu/ml) < 1540 62  

Hm (cfu/ml) < 320 56  

FO (cfu/ml) < 1520 49  

Chl a (µg/l) < 25 46  

TC (MPN/100 ml) > 120  26 

EC (µS/cm)   300 to 330 21  

H (cfu/ml) > 1540  20 

Hm (cfu/ml) > 320  19 

FO (cfu/ml) > 1520  16 

Fe (mg/l) < 0.1 15  

M alkalinity (ml/l) 26 to 29 10  

Chl a (µg/l) > 25  7 

BOD5 (mg/l) < 6.3 5  

EC (µS/cm)   330 to 815  3 
 

*see abbreviations. 

 
 
 

Table 2. Cluster discrimination - cluster 6 and other clusters - The Gruža reservoir. 
 

Variables (units)* Values Favors cluster 6 Favors complement of cluster 6 

Depth (m) 15 100  

TC (MPN/100 ml) 0 to 2340 51  

Mn (mg/l) 0.0 to 0.1 51  

Depth (m) 2 to 14  43 

Chl-a (µg/l) 0.0 to 7.7 25  

TC (MPN/100 ml) > 2340  11 

Chl-a (µg/l) > 7.7  7 

Mn (mg/l) 0.1 to 4.6  5 

Hm (cfu/ml) < 7795  2 

Hm (cfu/ml) > 7796 2  
 

*see abbreviations. 

 
 
 
Table 3. Cluster characteristics  - cluster 2 and cluster 6  - The 
Gruža reservoir. 
 

Cluster 2 Cluster 6 

Location Probability (%) Location Probability (%) 

1 to 2 63 4 to 5 66 

3 33 3 13 

4 to 5 1 1 to 2 1 

 
 
 
TC on certain values of Chl-a, EC, Mn, Fe, M alkalinity 
and BOD5. 

The analyzed clusters in the Grošnica reservoir indicate 
that there are no differences regarding to spatial 
distribution in the number  of  TC,  but  there  is  temporal  

dependence. The Grošnica reservoir is smaller in size 
and volume than the Gruža reservoir, and its 
environmental conditions are less heterogeneous. 
Temporal dependence is represented through months of 
sampling. The values for May and April, months with lots 
of rain, indicate that the number of TC would be > 135 
MPN/100 ml. In March, when temperatures are low and 
with no precipitation, as well as in August, usually with 
drought and low water levels, it is greater probability that 
the number of TC would be < 135 MPN/100 ml. Similar 
situation is in July and November when the probability is 
that the number of TC would be < 40 MPN/100 ml. M 
alkalinity is most significantly in relation with TC, while TC 
in this reservoir, instead of relation with Chl-a, shows 
greater dependence on NH4

+
. Among microbiological 

communities the relation with FO with small probability, is  
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Figure 3. Cluster Diagram for TC – The Grošnica reservoir. 

 
 
 

Table 4. Cluster discrimination - cluster 3 and other clusters - The Grošnica reservoir. 
 

Variables (units)* Values Favors cluster 3 Favors complement of cluster 3 

TC (MPN/100 ml) < 135 100  

NH4
+
 (mg/l) <  0.1 48  

M alkalinity (ml/l) 29 to 37 48  

TC (MPN/100 ml) > 135  28 

month III 13  

month VIII 10  

NH4
+
 (mg/l) 0.1 to 2  8 

EC (µS/cm)   313 to 467 8  

Fe (mg/l) 0.02 6  

BOD5 (mg/l) < 3.6 6  

month V  6 

Fe (mg/l) 0 4  

Cl
-
 (mg/l) 3.9 to 8.3 3  

M alkalinity (ml/l) 0.8  to 29  3 

TP µg/l  0 2  

month IV  2 

M alkalinity(ml/l) > 37  2 
 

*see abbreviations. 

 
 
 

Table 5. Cluster discrimination - cluster 5 and other clusters - The Grošnica reservoir. 
 

Variables (units)* Values Favors cluster 5 Favors complement of cluster 5 

TC (MPN/100 ml) 0 to 40 100  

M alkalinity(ml/l) 32 to 37 38  

TC (MPN/100 ml) > 40  25 

Month XI 11  

FO  171 to 385 9  

M alkalinity(ml/l) 0 to 32  5 

month VII 4  

Mn (mg/l) 0.0 to 0.8 4  

TP (µg/l) 0.02 4  

M alkalinity(ml/l) > 37  2 
 

*see abbreviations. 

 
 
Figure 3. Cluster Diagram for TC – The Grošnica reservoir 
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Figure 4. Decision Tree for TC - The Gruža reservoir. 

 
 
 

Table 6. Probabilities of TC values on a root level - The Gruža 
reservoir. 
  

Value Cases Probability Color 

< 22 224 13.99 Pink 

≥ 1500 203 12.70 Green 

150 to 1500 195 12.20 Purple 

22 to 150 346 21.50 Blue 

Missing 640 39.61 Gray 

 
 
 
noticeable. Also with small probability, the relation with 

 
 
Classify  

 
The classification for TC was made regarding to other 
physical-chemical and biological parameters. Figure 4 
presents decision tree showing the identified pattern 
upon which the dependency net with FO (mbp_39), EC 
(fhp_8), COD (fhp_10), turbidity (fhp_27), TP (fhp_13) 
and Cl

-
 (fhp_12) was determined for the Gruža reservoir. 

For the Gruža reservoir the pattern identified five 
classes which have been formed based on the grouping 
of values of TC (Table 6). For each node the probabilities 
of TC values have been calculated by categories. Each 
category corresponds to one color on the decision trees 
diagram, which is proportional to its probability. On the 
root node (All) which refers to the whole sample 
irrespective of FO, EC, COD, turbidity, TP and Cl

-
, 

probabilities of TC according to categories (Figure 4) are 
calculated. 

The values of TC in the range of 22 to 150 MPN/100 ml 
are the most common. The level 2 emphasizes the 
primary influence on FO. Generally, extremely high 
values of FO cause high values of TC. For FO are ≥ 
17320 cfu/ml, the probability for values of TC to be ≥ 
1500 MPN/100 ml is 63%, and 150 to 1500 MPN/100 ml, 

18%. If the values of FO are < 17320 cfu/ml, the analysis 

shows that the greatest number of TC is  150 MPN/100 
ml. If FO is < 17320 cfu/ml, then the third level shows the 
influence of EC on TC. If values for EC exist and are 

smaller than 385 S/cm, the number of TC in 61% of 

cases will be  150 MPN/100 ml, and if higher than 385 

S/cm, the number of TC will be higher than  150 
MPN/100 ml in 92% of cases. The fourth level shows the 
influence of COD, and only if there are no values for EC. 
On the fourth level the equal influence of turbidity is 
notisable, but only if the values of EC are smaller than 

385 S/cm. The analysis offers two categories of data. 
The first category emphasise the values of turbidity under 

20 NTU, whereas the values of TC  150 MPN/100 ml 
are favored in 69%. If the turbidity values are higher than 
20 NTU (the second category of data), then TC have the 
range of appearance 22 to 1500 MPN/100 ml in 75%. If 
COD not missing the fifth level offers the relation to TP 
and if turbidity values are higher than 20 NTU then the 
fifth level offers the relation to and Cl

-
 (Figure 4). 

Figure 5 presents the decision tree showing the pattern 
by which dependence network of TC with Hm (mbp_38) 
and BOD5 (fhp_25) has been found for the Grošnica 
reservoir. By classification, three classes of data 
regarding to TC have been identified, whereby one class 
comprises the data with non existing values for TC. For 
Grošnica reservoir it can be excluded from further 
analysis, which leaves two classes of data for TC. Table 
7 presents classes of data regarding TC on root level. 
The second level presents classes of values for Hm (if 
there are no values for Hm there won‘t be any values for 
TC, those are the data excluded from the analysis on 
basic node), while the third level shows the strongest 
relation between TC and BOD5.  

 The Grošnica reservoir, unlike the Gruža reservoir, it is 
evident that beside strong relation with Hm and BOD5, 
the analysis does not offer ranges of values of variables 
according to which certain quantity or class of TC 
appears. It means  that  classification  is  applicable  from  
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Figure 5. Decision Tree for TC – The Grošnica reservoir. 

 
 
 
Table 7. Probabilities of TC values on a root level - The Grošnica 
reservoir. 
 

Value Cases Probability Color 

< 130 141 37 Blue 

 130 31 9 Pink 

Missing 210 54 Gray 

 
 
 
entered minimum to entered maximum for a certain 
parameter, and that within that range there are no other 
regularities. In the Grošnica reservoir, for TC they are 0 
to 38000 MPN/100 ml; for Hm 4 to 4533 cfu/ml and for 
BOD5, 0.06 to 4.18 mg/l. 

By classification using the decision tree it is possible to 
detect the relation of TC and some other physicochemical 
or biological parameter in the reservoirs. In both 
reservoirs the strongest relation of TC is to other bacterial 
community. The specificity shown from the results of 
analysis in both reservoirs is that TC realizes the 
strongest relation with community that is non-dominant 
for specific reservoir. In the Gruža reservoir TC realize 
the greatest dependence on FO, while in the Grošnica 
reservoir on Hm. In the Gruža reservoir there is also 
partial concurrence in CA (higher values of FO indicate 
higher values of TC). In Grošnica reservoir there is clear 
relation of number of TC with BOD5. The same relation 
has been obtained by both, CA and decision tree, which 
is also confirmed by other authors who used this 
parameter as one of the basic in modeling of the number 
of TC (Syed Ahmad et al., 2009). In the Gruža reservoir, 
the decision tree analysis is more complex and apart 
from FO there are also concurrences of other parameters 
with CA. It refers to EC as one of important factors 
influencing the number of TC. In CA, together with EC, it 
is also noticeable that the influence of M alkalinity is 
significant, which indicates that mineral budget of the 
reservoir has great influence on the number of TC in 
these reservoirs. Further analysis show the relation of TC 
with range of parameters regarding to the amount of 
organic matter in water. In the Gruža reservoir it is 
noticeable by the relation of TC with COD and turbidity, 

while previously mentioned relation of BOD5 and TC in 
the Grošnica reservoir indicates the same thing. The 
relation between the amount of organic material and the 
number of coliforms was confirmed by other authors as 
well. Hong et al. (2010) established the influence of SS, 
organic and inorganic nutrients on total coliforms. They 
point out the relation of total amount of carbon with TC, 
and TSS with FC, wherein the increased amount of TSS 
is the result of factors from the external environment. A 
number of authors confirm the existence of strong 
relation between human activities, their ways of using 
surrounding land, with the number of coliforms in water. 
That relation can be direct and under the influence of 
surface runoff, but also indirect due to the changes of 
physicochemical and biological factors which eventually 
cause the changes in number of coliforms (Fisher and 
Endale, 1999; Tong and Chen, 2002; Kistemann et al., 
2002; Mehaffey et al., 2005; Zhang and Lulla, 2006; 
Derlet et al., 2008; Hong et al., 2010). Byamukama et al. 
(2005) point out the constant presence of TC in the soil 
surrounding water and the great influence they have on 
the number of TC in water. They also point out the 
significant relation of TC with EC and TSS in waters 
under the great influence of anthropogenic activities and 
contamination.  

Results indicate that it is possible, with help of CA, to 
separate localities and depths showing the difference in 
number of TC. The Gruža reservoir is bigger regarding 
the area it covers and volume, the number of sampling 
localities is greater, and the number of samples per 
locality more balanced. In the Gruža reservoir the number 
of TC varies regarding to depths, it is different in the 
deepest and in the shallowest parts. This can be 
explained by smaller anthropogenic influence in the 
deepest parts due to the existence of a vegetation zone 
along the reservoir shore, by greater average depth, as 
well as by the use of hypolymnetic aerator. In the 
shallowest part of reservoir, especially in mouths of 
tributaries as well as in the tributaries, the anthropogenic 
influence is great (recreational activities, cultivated fields, 
use of pesticides, fertilizers, industrial activity on 
tributaries etc.). Here CA directly indicates that the 
number of TC is influenced  by  anthropogenic  activity  in  



 
 
 
 
the area. In Grošnica reservoir CA does not offer the 
same possibility primarily due to small number of data as 
well as their structure. The Grošnica reservoir is small 
regarding the area it covers and volume, most samples 
are from one locality only (the dam), so it is not possible 
to determine regularly the influence of other localities. In 
the Grošnica reservoir it gives the influence of temporal 
dimension on the number of TC, which is not noticeable 
in Gruža. The reason for this is found in different 
geographical position and elevation. In this reservoir CA 
is directed to prediction and it gives the information about 
the ranges in which some characteristics follow the 
certain number of TC, which decision tree in this case 
does not present. CA with K-means algorithm gives 
satisfying results about the analyses of physicochemical 
and biological parameters in water monitoring 
(Areerachakul and Sanguansintukul, 2010). 

All noted indicates that parameters of water quality 
collected by standard hydrobiological researches could 
be used for making models which would efficiently enable 
monitoring of dynamics and prediction of the state of 
microorganisms such as total coliforms (Brion et al., 
2001, 2002). The application of created models could be 
significant for the improvement of water quality, reduction 
of the expenses of monitoring and management of water 
resources.  
 
 

Conclusion 
 
Analysis and modeling of microbiological parameters is 
an important aspect in evaluation of state and quality 
improvement of freshwater ecosystems. The tools of data 
mining are becoming even more significant in this area of 
research, and are being applied in data analysis. In this 
paper a combination of cluster analyses and classification 
has been used. Data mining models are built upon data 
source views which represent an abstraction layer over 
existing SeLaR information system. This approach is 
more flexible and effective comparing to traditional data 
warehouse approaches, and it provides a single 
metadata model for creation of data mining models. By 
water quality modeling and prediction of state of total 
coliforms, a good presentation of one dynamic system 
could be obtained. Designed data mining models allow 
identification of previously unknown relationships and 
provide predictions, so it is possible to make more 
informed water management decisions. In this way, a 
new dimension of monitoring of reservoirs and lakes is 
provided. The approach presented in this study could be 
one of the valuable techniques for managing water 
resources.  
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